Search results for "Channel occupancy"

showing 1 items of 1 documents

Predicting lorawan behavior. How machine learning can help

2020

Large scale deployments of Internet of Things (IoT) networks are becoming reality. From a technology perspective, a lot of information related to device parameters, channel states, network and application data are stored in databases and can be used for an extensive analysis to improve the functionality of IoT systems in terms of network performance and user services. LoRaWAN (Long Range Wide Area Network) is one of the emerging IoT technologies, with a simple protocol based on LoRa modulation. In this work, we discuss how machine learning approaches can be used to improve network performance (and if and how they can help). To this aim, we describe a methodology to process LoRaWAN packets a…

IoTComputer Networks and CommunicationsComputer scienceDecision treeChannel occupancy; cluster analysis; IoT; LoRa; LoRaWAN; machine learning; network optimization; prediction analysisMachine learningcomputer.software_genreChannel occupancyLoRalcsh:QA75.5-76.95network optimizationNetwork performanceProtocol (object-oriented programming)Profiling (computer programming)Artificial neural networkNetwork packetbusiness.industrySettore ING-INF/03 - TelecomunicazioniPipeline (software)LoRaWANHuman-Computer Interactionmachine learningprediction analysisArtificial intelligencelcsh:Electronic computers. Computer sciencebusinesscomputerCommunication channelcluster analysis
researchProduct